

Valuation of urban NBS: application of benefit transfer method and lessons learnt

Marija Bockarjova Wouter Botzen

Utrecht University School of Economics

Universiteit Utrecht

Funded by the Horizon 2020 Framework Programme of the European Union Grant number 730243

Valuation of urban NBS: application of benefit transfer method and lessons learnt

Marija Bockarjova Wouter Botzen

Utrecht University School of Economics

CONTEXT

Economic valuation in H2020 NATURVATION project

1) Literature overview

• Economic values database

2) Methods for NBS assessment and NBSAF

- NBS assessment methods database
- Estimation of NBS value functions

3) Application of NBS value functions to assess NBS impacts

• European Urban Nature Atlas

Benefit transfer method (BT)

METHOD

ECONOMIC VALUATION METHODOLOGY:

Stated preferences Revealed preferences Benefit transfer

*** * * * *

FEATURES

- Uses primary valuation data / existing assessments
 → meta-analysis method
- Quantitatively analyses primary valuation data / existing assessments \rightarrow Value transfer function (VTF)
- Enables applying VTF to a different location / context

 → obtain context & location specific values

ADVANTAGES

- Can be conducted relatively fast compared to primary valuation studies
- Based on up-to-date values and techniques from a variety of contexts, locations, nature types, ecosystem services, ...

DISADVANTAGES

- Aggregates data
- Depend on data from existing studies (e.g. NBS type)

METHOD

Value transfer function specification

BENEFIT **TRANSFER:**

 $y_{ij} = \alpha + \beta^c X^c_{ij} + \beta^\alpha X^\alpha_{ij} + \beta^s X^s_{ij} + \mu_j + \varepsilon_{ij}$

 y_{ij} - the annual per hectare urban nature values (2016 EUR) $\beta^{c}X^{c}{}_{ii}$ - socio-economic matrix $\beta^{\alpha} X^{\alpha}{}_{ij}$ - study characteristics matrix $\beta^{s} X^{s}_{ij}$ – site characteristics matrix μ_j - residuals on the observation level ε_{ij} - residuals on the author level

Mixed effect model; multi-level model (MLM) N=147

MAIN FINDINGS

BENEFIT TRANSFER:

results

Value transfer function (VTF) estimation:

economic variables are associated with values of NBS in an expected way, namely:

- higher income per capita is associated with higher per ha NBS value
- higher urban density is associated with higher per ha NBS value
- bigger area of NBS is associated with lower per ha value of NBS

• Types of urban nature:

Urban parks is valued higher than an urban forest, blue nature or urban green connected to grey

• Scale:

VTF's based on **global data** and **European-only data** are estimated for various NBS types / ecological domains

Additional BTF's are being estimated with focus on area size.

	Average value			
	in 2016 USD per ha per year			
	Global data	European data		
<u>Type of nature:</u>				
Park	\$11,007	\$ 12,338		
Green connected to grey	\$1,955	\$ 2,601		
Blue	\$1,895	\$ 1,058		
Forest	\$1,523	\$980		
Peri-urban areas	\$1,187	\$980		

Bockarjova, Botzen and Koetse (2018), submitted to journal

BENEFIT TRANSFER:

estimation results – average values

APPLICATION

BENEFIT **TRANSFER:**

European Urban Nature Atlas

https://naturvation.eu/atlas

		Cordoba	Stockholm	Strasbourg	Athens	
MAIN		Asomadilla	The Royal	Danube Eco-	Hellenikon	
		Park	National City	District	Metropolitan	
FINDINGS			Park		Park	
	Area (ha)	27	2700	1	200	
DENIERIT	GDP per capita (2016	25587	65853	37160	35653	
BENEFII	USD)					
TRANSFER.	Population density	260	3597	3500	7500	
	BTF application	INFLATED VALUES OF NBS WITH LOW ARE SIZE				
	(European data)				ו	
avampla	Value per ha per year	\$509,194	\$46,336	\$33,527,530	\$251,865	
example –	(2016 USD)				J	
application of	Total value, per year	\$13,748,234	\$125,107,874	\$33,527,530	\$50,372,975	
	_(2016 USD)					
VIF to specific	Bockarjova, Botzen and Koetse (2018), submitted to journal					

Bockarjova, Botzen and Koetse (2018), submitted to journal

NBS

Meta-analysis of values of urban green and blue nature

CONCLUSIONS

- BT / meta-analysis is a useful tool to systematically analyse economic value of urban nature
- ightarrow meta-analysis method / VTF
- VTF applied to obtain economic value of actual NBS's → European Urban Nature ATLAS
- BT can be used at different scales → global / European

CHALLENGES / application

- NBS area sizes partially not available in Urban Nature Atlas
- Inflated values of small-size urban nature

SOLUTIONS

- Extra data search / approximation of area sizes
- Fine-tuning of VTF's for various area sizes
- Specify application procedure

CONCLUSIONS & REMARKS

ESTIMATION APPLICATION NEXT STEPS

